Study of Lubrication Oil Ignition in a Rapid Compression Under Sporadic Pre - Ignition Conditions

نویسندگان

  • Wai K. Cheng
  • Paul Sullivan
چکیده

In recent years, the industry has shifted toward down-sizing and turbo-charging spark ignition (SI) engines in an effort to increase fuel conversion efficiency. However, this has given rise to a destructive phenomenon known as sporadic pre-ignition (SPI). At low cranking speeds and high loads, engines have been observed to knock violently for brief and infrequent intervals. If allowed to continue, these periods of knock will result in a destroyed engine. This study looks at the propensity of lube oil vapor appearing in the cylinder as a cause for this phenomenon. The theory is that a local oil vapor/air mixture pocket may auto-ignite and start a flame in the charge. The pre-ignition would produce extreme knock. A rapid compression machine (RCM) was used to simulate this scenario and determine if oil vapor can cause SPI, and if so, to relate the auto-ignition tendency to the oil properties. The RCM was used to measure the ignition delay of a cloud of oil vapor in a stoichiometric gasoline/air mixture. The ignition delays were then correlated to chemical and physical properties of the oils. Finally, the effect of diluting the mixture was assessed. The results suggest that lube oil is a plausible source of SPI. The oil ignition delay times are sufficiently short to produce extreme pre-ignition consistent with SPI. Further supporting evidence lies in the fact that oil ignition delay times concur with SPI behavior in engines. It was found that the base stock, degradation, and chemical additives all play a role in oil ignition delay times. The results also demonstrate. that dilution significantly slows auto-ignition of the oil. Thesis Supervisor: Wai K. Cheng Title: Professor of Mechanical Engineering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of hydrogen and nitrogen addition on heavy duty diesel engine emissions under reactivity controlled compression ignition combustion

The aim of this study is to evaluate a heavy duty diesel engine operation under reactivity controlled compression ignition combustion fueled with diesel oil and natural gas enriched with hydrogen and nitrogen addition. In this study, a single cylinder heavy– duty diesel engine is set to operate at 9.4bar gross IMEP (Mid- Load). The amount of injected diesel oil per cycle into the engine combust...

متن کامل

Characteristics of fish oil biodiesel with the impact of diesel fuel addition on a CI engine

The present study focuses on the optimization in the use of non-petroleum fuel derived from waste fish oil fuels, as a replacement for petroleum diesel fuel for compression ignition engine. The study comprises of comparison between results of fish oil biodiesel-diesel blends on a compression ignition engine. Fuel properties such as viscosity, density, heat value of fuel, cetane number and a fla...

متن کامل

Analysis of combustion in a small homogeneous charge compression assisted ignition engine

Combustion analysis has been conducted on a small two-stroke glow ignition engine, which has similar combustion characteristics to homogeneous charge compression ignition (HCCI) engines. Difficulties such as unknown ignition timing and the polytropic index have been addressed by combining both heat release and mass fraction burn analyses. Results for all operating conditions have shown good cor...

متن کامل

Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine

A rapid compression machine (RCM) test bench is developed in this study. The performance characterization and auto-ignition performance tests are conducted at an initial temperature of 293 K, a compression ratio of 9.5 to 16.5, a compressed temperature of 650 K to 850 K, a driving gas pressure range of 0.25 MPa to 0.7 MPa, an initial pressure of 0.04 MPa to 0.09 MPa, and a nitrogen dilution rat...

متن کامل

Effect of Initial Temperature and EGR on Combustion and Performance Characteristics of Homogenous Charge Compression Ignition Engine Fueled with Dimethyl Ether

Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015